Features

* High-performance, Low-power Atmel®AVR®8-bit Microcontroller
* Advanced RISC Architecture
— 133 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers + Peripheral Control Registers
— Fully Static Operation
— Up to 16MIPS Throughput at 16MHz
— On-chip 2-cycle Multiplier
* High Endurance Non-volatile Memory segments
— 128Kbytes of In-System Self-programmable Flash program memory
— 4Kbytes EEPROM
— 4Kbytes Internal SRAM
— Write/Erase cycles: 10,000 Flash/100,000 EEPROM
— Data retention: 20 years at 85°C/100 years at 25°C("
— Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
— Up to 64Kbytes Optional External Memory Space
— Programming Lock for Software Security
— SPI Interface for In-System Programming
* QTouch® library support
— Capacitive touch buttons, sliders and wheels
— QTouch and QMatrix acquisition
— Up to 64 sense channels
* JTAG (IEEE std. 1149.1 Compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard
— Extensive On-chip Debug Support
— Programming of Flash, EEPROM, Fuses and Lock Bits through the JTAG Interface
* Peripheral Features
— Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
— Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode and Capture
Mode
— Real Time Counter with Separate Oscillator
— Two 8-bit PWM Channels
— 6 PWM Channels with Programmable Resolution from 2 to 16 Bits
— Output Compare Modulator
— 8-channel, 10-bit ADC
8 Single-ended Channels
7 Differential Channels
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
— Byte-oriented Two-wire Serial Interface
— Dual Programmable Serial USARTs
— Master/Slave SPI Serial Interface
— Programmable Watchdog Timer with On-chip Oscillator
— On-chip Analog Comparator
® Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources
— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and
Extended Standby
— Software Selectable Clock Frequency
— ATmega103 Compatibility Mode Selected by a Fuse
— Global Pull-up Disable
® |/O and Packages
— 53 Programmable I/O Lines
— 64-lead TQFP and 64-pad QFN/MLF
® Operating Voltages
— 2.7 - 5.5V ATmegai28L
- 4.5-5.5V ATmegai28
* Speed Grades
— 0-8MHz ATmegai28L
— 0-16MHz ATmega128

ATMEL

®

AIMEL

Y ®

8-bit Atmel
Microcontroller
with 128KBytes
In-System
Programmable
Flash

ATmegai28
ATmega128L

Rev. 2467X-AVR-06/11

e A TMega128

Pin
Configurations

Figure 1. Pinout ATmega128

OO =
O =00
~~~~EEEE
O~ QAN M < 1K © I~ —_ o~ o~
O OO 00000 OO o - A
[alalalalalalNaRal [ a e
Oom$$$$$$$$o SIS
SzERLYpPrLer=z023xd
< O0O<<oooooooon @ >o0oo0an
0000000000000 0M00
— 3B I3IBBHBBBIBBH I
PENC|1 o 48 [1 PA3 (AD3)
RXDO/(PDI) PEO [] 2 47 [ PA4 (AD4)
(TXDO/PDO) PE1[]3 46 [ PA5 (ADS5)
(XCKO/AINO) PE2 [] 4 45 [ PA6 (AD6)
(OC3A/AIN1) PE3 [] 5 44 [1 PA7 (AD7)
(OC3B/INT4) PE4 [] 6 43 [1 PG2(ALE)
(OC3C/INT5) PE5 [ 7 R 42 [1 PC7 (A15)
(T3/INT6) PE6 [ 8 A R 41 [1PC6 (A14)
(ICP3/INT7) PE7 [ 9 40 [ PC5 (A13)
(SS) PBO [] 10 39 [1 PC4 (A12)
(SCK) PB1 ] 11 38 [J PC3 (A11)
(MOSI) PB2 [] 12 37 [J PC2 (A10)
(MISO) PB3 [] 13 36 [1 PC1 (A9)
(OC0) PB4 [] 14 35 [ PCO (A8)
(OC1A) PB5 ] 15 34 [1 PG1(RD)
(OCIB)PBELI 16 & 0 0 v« i 0 < 0 © ~ @ o o — o33 PGOWR)
T -~ A AN AN AN AN AN AN AN ANANOOOOm
I O A O
o388 8833448856
&&&wg%fjfjm&&mmmma
o8 g5le XXSFAa®BoEFEa
- FEEEQLX -
O DA Z2Z2Z2Z00 ——
o R S X%
S 33K
e} S =

Note:  The Pinout figure applies to both TQFP and MLF packages. The bottom pad under the QFN/MLF
package should be soldered to ground.

Overview The Atmel® AVR® ATmega128 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the
ATmega128 achieves throughputs approaching 1MIPS per MHz allowing the system designer to
optimize power consumption versus processing speed.

ATMEL z

2467X-AVR-06/11



ATmegal28

Block Diagram

Figure 2. Block Diagram

Hl |+
- o I
. -
PFO - PF7 PAO - PA7 PCO - PC7 2 2| |2
A A A A A A A x x o
Femm e Yt DU Y S My N U S Y N )N A PRSI N D M I D DU EpEED S B
VCC
GND I Yy V. V ¥y V.V N
1
! | PORTF DRIVERS | | PORTA DRIVERS | | PORTC DRIVERS
— |
1
1
1
| »| DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATA REGISTER DATA DIR.
! | PorTF REG. PORTF PORTA REG. PORTA PORTC REG. PORTC
1
! i I i i 8-BIT DATA BUS i i
1
\ A
1
AVCC
: - Y CALIB. 0SC
' > ADC INTERNAL
AGND— 3 OSCILLATOR
AREF | >
- ¢ OSCILLATOR !7
1
i PROGRAM STACK WATCHDOG
! JTAGTAP | _’l COUNTER | POINTER TIMER
! = OSCILLATOR
e e [
1
! PROGRAM MCU CONTROL »| TIMING AND
! —>|ON-CHIP DEBUG ‘>| FLASH | ::I SRAM |<—> <—>| REGISTER > CONTROL
| d X
- —— [
1
1
X INSTRUCTION GENERAL TIMER/ € >
| REGISTER N NTER N
! PURPOSE R COUNTERS
X REGISTERS [€
: [ X
PEN 1 | HOGRAMMING INSTRUGTION 8 v INTERRUPT €
LOGIC DECODER L 7 UNIT

v

CONTROL
STATUS P
REGISTER K

}

v
USARTO > SPI | USART1 | |TWO-WIRE SERIALl

INTERFACE

X i i

D

il ) ! Loy

o
o r
8 E DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATA REG. || DATA DIR.
3‘% + PORTE REG. PORTE PORTB REG. PORTB PORTD REG. PORTD PORTG REG. PORTG
zZ
=
B || clbddE dhvieedd Wby | lbed di
o
| PORTE DRIVERS PORTB DRIVERS | PORTD DRIVERS PORTG DRIVERS
A A\ A A
Y VY VY v
PEO - PE7 PBO - PB7 PDO - PD7 PGO - PG4

ATMEL ;

2467X-AVR-06/11



e A TMega128

ATmegal03 and
ATmegal28
Compatibility

2467X-AVR-06/11

The Atmel® AVR® core combines a rich instruction set with 32 general purpose working regis-
ters. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two
independent registers to be accessed in one single instruction executed in one clock cycle. The
resulting architecture is more code efficient while achieving throughputs up to ten times faster
than conventional CISC microcontrollers.

The ATmega128 provides the following features: 128Kbytes of In-System Programmable Flash
with Read-While-Write capabilities, 4Kbytes EEPROM, 4Kbytes SRAM, 53 general purpose I/0
lines, 32 general purpose working registers, Real Time Counter (RTC), four flexible Timer/Coun-
ters with compare modes and PWM, 2 USARTSs, a byte oriented Two-wire Serial Interface, an 8-
channel, 10-bit ADC with optional differential input stage with programmable gain, programma-
ble Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant
JTAG test interface, also used for accessing the On-chip Debug system and programming and
six software selectable power saving modes. The Idle mode stops the CPU while allowing the
SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down
mode saves the register contents but freezes the Oscillator, disabling all other chip functions
until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer contin-
ues to run, allowing the user to maintain a timer base while the rest of the device is sleeping.
The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous
Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the
Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very
fast start-up combined with low power consumption. In Extended Standby mode, both the main
Oscillator and the Asynchronous Timer continue to run.

Atmel offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels
functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers
robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key
Suppression® (AKS™) technology for unambiguous detection of key events. The easy-to-use
QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.

The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On-
chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial
interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program
running on the AVR core. The boot program can use any interface to download the application
program in the application Flash memory. Software in the Boot Flash section will continue to run
while the Application Flash section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,
the Atmel ATmega128 is a powerful microcontroller that provides a highly flexible and cost effec-
tive solution to many embedded control applications.

The ATmega128 device is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators,
and evaluation Kkits.

The ATmegai128 is a highly complex microcontroller where the number of 1/O locations super-
sedes the 64 I/O locations reserved in the AVR instruction set. To ensure backward compatibility
with the ATmega103, all I/O locations present in ATmega103 have the same location in
ATmega128. Most additional I/O locations are added in an Extended /O space starting from $60
to $FF, (i.e., in the ATmega103 internal RAM space). These locations can be reached by using
LD/LDS/LDD and ST/STS/STD instructions only, not by using IN and OUT instructions. The relo-
cation of the internal RAM space may still be a problem for ATmega103 users. Also, the
increased number of interrupt vectors might be a problem if the code uses absolute addresses.
To solve these problems, an ATmegai03 compatibility mode can be selected by programming
the fuse M103C. In this mode, none of the functions in the Extended I/O space are in use, so the
internal RAM is located as in ATmega103. Also, the Extended Interrupt vectors are removed.

AIMEL 4

®



e A TMega128

ATmegal03
Compatibility Mode

Pin Descriptions
VCC
GND

Port A (PA7..PA0)

Port B (PB7..PB0)

2467X-AVR-06/11

The ATmega128 is 100% pin compatible with ATmega103, and can replace the ATmega103 on
current Printed Circuit Boards. The application note “Replacing ATmega103 by ATmega128”
describes what the user should be aware of replacing the ATmega103 by an ATmega128.

By programming the M103C fuse, the Atmel®ATmega128 will be compatible with the
ATmega103 regards to RAM, I/O pins and interrupt vectors as described above. However, some
new features in ATmegai128 are not available in this compatibility mode, these features are
listed below:

¢ One USART instead of two, Asynchronous mode only. Only the eight least significant bits of
the Baud Rate Register is available.

* One 16 bits Timer/Counter with two compare registers instead of two 16-bit Timer/Counters
with three compare registers.

e Two-wire serial interface is not supported.

e Port C is output only.

* Port G serves alternate functions only (not a general I/O port).

* Port F serves as digital input only in addition to analog input to the ADC.

e Boot Loader capabilities is not supported.

e ltis not possible to adjust the frequency of the internal calibrated RC Oscillator.

e The External Memory Interface can not release any Address pins for general I/O, neither
configure different wait-states to different External Memory Address sections.

In addition, there are some other minor differences to make it more compatible to ATmega103:

* Only EXTRF and PORF exists in MCUCSR.

e Timed sequence not required for Watchdog Time-out change.

e External Interrupt pins 3 - 0 serve as level interrupt only.

e USART has no FIFO buffer, so data overrun comes earlier.

Unused I/O bits in ATmega103 should be written to 0 to ensure same operation in ATmegai128.

Digital supply voltage.
Ground.

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port A also serves the functions of various special features of the ATmega128 as listed on page
72.

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B also serves the functions of various special features of the ATmega128 as listed on page

AIMEL 5

®



e A TMega128

Port C (PC7..PCO)

Port D (PD7..PDO)

Port E (PE7..PEO)

Port F (PF7..PFO0)

Port G (PG4..PGO0)

2467X-AVR-06/11

Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port C also serves the functions of special features of the Atmel® AVR®ATmega128 as listed on

page 76. In ATmega103 compatibility mode, Port C is output only, and the port C pins are not tri-

stated when a reset condition becomes active.

Note:  The ATmegai128 is by default shipped in ATmega103 compatibility mode. Thus, if the parts are not
programmed before they are put on the PCB, PORTC will be output during first power up, and until
the ATmega103 compatibility mode is disabled.

Port D is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the ATmega128 as listed on page
77.

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port E also serves the functions of various special features of the ATmega128 as listed on page
80.

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will
be activated even if a Reset occurs.

The TDO pin is tri-stated unless TAP states that shift out data are entered.

Port F also serves the functions of the JTAG interface.

In ATmega103 compatibility mode, Port F is an input Port only.

Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port G also serves the functions of various special features.

The port G pins are tri-stated when a reset condition becomes active, even if the clock is not
running.

AIMEL 6

®



e A TMega128

RESET

XTALA1
XTAL2

AVCC

AREF

PEN

2467X-AVR-06/11

In ATmega103 compatibility mode, these pins only serves as strobes signals to the external
memory as well as input to the 32kHz Oscillator, and the pins are initialized to PG0 =1, PG1 =1,
and PG2 = 0 asynchronously when a reset condition becomes active, even if the clock is not
running. PG3 and PG4 are oscillator pins.

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 19 on page
50. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Output from the inverting Oscillator amplifier.

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-
nected to V¢, even if the ADC is not used. If the ADC is used, it should be connected to V¢
through a low-pass filter.

AREEF is the analog reference pin for the A/D Converter.

PEN is a programming enable pin for the SPI Serial Programming mode, and is internally pulled

high . By holding this pin low during a Power-on Reset, the device will enter the SPI Serial Pro-
gramming mode. PEN has no function during normal operation.

AIMEL 7

®



e A TMega128

Resources

Data Retention

About Code
Examples

A comprehensive set of development tools, application notes, and datasheets are available for
download on http://www.atmel.com/avr.

Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C

This datasheet contains simple code examples that briefly show how to use various parts of the
device. These code examples assume that the part specific header file is included before compi-
lation. Be aware that not all C compiler vendors include bit definitions in the header files and
interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation
for more details.

For 1/O registers located in extended 1/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended 1/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

Capacitive touch sensing

2467X-AVR-06/11

The Atmel QTouch Library provides a simple to use solution to realize touch sensitive interfaces
on most Atmel AVR microcontrollers. The QTouch Library includes support for the QTouch and
QMatrix acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library
for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch chan-
nels and sensors, and then calling the touch sensing API's to retrieve the channel information
and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location:
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the
Atmel QTouch Library User Guide - also available for download from the Atmel website.

AIMEL 8

®


www.atmel.com/qtouchlibrary
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf

e A TMega128

AVR CPU Core

Introduction

Architectural
Overview

2467X-AVR-06/11

This section discusses the Atmel® AVR® core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to access
memories, perform calculations, control peripherals and handle interrupts.

Figure 3. Block Diagram of the AVR Architecture

Data Bus 8-bit
Program Status
Flash € >
Program Counter and Control
Memory <
i Interrupt
32x8 [ Unit
Instruction General
Register Purpose > SPI
i [€— Registrers (<> Unit
Instruction Watchdog
Decoder o <« Timer
o c
£ k7
0 1%
l g g v AnaIOg
Control Lines 3 2 Comparator
< 5
o (9}
9] =
= °
= £ [<>| 1/0 Module1
>
Data les)e> 10 Module 2
SRAM
<> |/O Module n
EEPROM >
1/0 Lines <>

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

The fast-access Register file contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register file, the operation is executed,
and the result is stored back in the Register file — in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing — enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash Program memory. These
added function registers are the 16-bit X-register, Y-register and Z-register, described later in
this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

AIMEL 9

®



e A TMega128

ALU - Arithmetic
Logic Unit

Status Register

2467X-AVR-06/11

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16-bit or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash Memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the reset routine (before subroutines or interrupts are executed). The Stack
Pointer — SP — is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global
interrupt enable bit in the Status Register. All interrupts have a separate interrupt vector in the
interrupt vector table. The interrupts have priority in accordance with their interrupt vector posi-
tion. The lower the interrupt vector address, the higher the priority.

The 1/0 memory space contains 64 addresses which can be accessed directly, or as the Data
Space locations following those of the Register file, $20 - $5F. In addition, the ATmega128 has
Extended I/O space from $60 - $FF in SRAM where only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories — arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The status register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

The AVR status Register — SREG — is defined as:

Bit 7 6 5 4 3 2 1 0
| + | v | v [ s | v N z ¢ | sReG

Read/Write RW RIW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

AIMEL 10



e A TMega128

General Purpose
Register File

2467X-AVR-06/11

e Bit 7 — I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared in
software with the SEI and CLI instructions, as described in the instruction set reference.

e Bit 6 — T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register file can be copied into T by the

BST instruction, and a bit in T can be copied into a bit in a register in the Register file by the BLD
instruction.

* Bit 5 — H: Half Carry Flag

The Half Carry Flag H indicates a half carry in some arithmetic operations. Half carry is useful in
BCD arithmetic. See the “Instruction Set Description” for detailed information.

* Bit4-S:SignBit,S=N®V

The S-bit is always an exclusive or between the negative flag N and the two’s complement over-
flow flag V. See the “Instruction Set Description” for detailed information.

¢ Bit 3 - V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

¢ Bit 2 — N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

e Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

e Bit0 - C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

The Register file is optimized for the AVR Enhanced RISC instruction set. In order to achieve the
required performance and flexibility, the following input/output schemes are supported by the
Register file:

¢ One 8-bit output operand and one 8-bit result input
e Two 8-bit output operands and one 8-bit result input
¢ Two 8-bit output operands and one 16-bit result input
¢ One 16-bit output operand and one 16-bit result input

Figure 4 on page 12 shows the structure of the 32 general purpose working registers in the
CPU.

AIMEL 1

®



e A TMega128

Figure 4. AVR CPU General Purpose Working Registers

7 0 Addr.
RO $00
R1 $01
R2 $02
R13 $0D
General R14 $OE
Purpose R15 $OF
Working R16 $10
Registers R17 $11
R26 $1A X-register Low Byte
R27 $1B X-register High Byte
R28 $1C Y-register Low Byte
R29 $1D Y-register High Byte
R30 $1E Z-register Low Byte
R31 $1F Z-register High Byte

Most of the instructions operating on the Register file have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 4, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y-, and Z-pointer Registers can be set to index any register in the file.

The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the Data Space. The three indirect
address registers X, Y, and Z are described in Figure 5.

X-register, Y-register,
and Z-register

Figure 5. The X-, Y-, and Z-registers

15 XH XL
X - register I 7 0 I 7 0 I
R27 ($1B) R26 ($1A)
15 YH YL 0
Y - register |~ o7 |
R29 ($1D) R28 ($1C)
15 ZH ZL 0
Z - register 17 o7 o]
R31 (51F) R30 ($1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the Instruction Set Reference for details).

2467X-AVR-06/11

ATMEL

®

12



e A TMega128

Stack Pointer

RAM Page Z Select
Register - RAMPZ

Instruction
Execution Timing

2467X-AVR-06/11

The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above $60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0
0 0 0
Bit 7 6 5 4 3 2 1 0
| - — - - - - - RAMPZ0 | RAMPZ
Read/Write R R R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7..1 — Res: Reserved Bits

These are reserved bits and will always read as zero. When writing to this address location,
write these bits to zero for compatibility with future devices.

¢ Bit 0 — RAMPZ0: Extended RAM Page Z-pointer

The RAMPZ Register is normally used to select which 64K RAM Page is accessed by the Z-
pointer. As the ATmega128 does not support more than 64K of SRAM memory, this register is
used only to select which page in the program memory is accessed when the ELPM/SPM
instruction is used. The different settings of the RAMPZO0 bit have the following effects:

RAMPZ0 = 0: Program memory address $0000 - $7FFF (lower 64 Kbytes) is
accessed by ELPM/SPM

RAMPZ0 =1: Program memory address $8000 - $FFFF (higher 64 Kbytes) is
accessed by ELPM/SPM

Note that LPM is not affected by the RAMPZ setting.

This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkgpy, directly generated from the selected clock source for the
chip. No internal clock division is used.

AIMEL 13

®



e A TMega128

Figure 6 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register file concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 6. The Parallel Instruction Fetches and Instruction Executions

3rd Instruction Execute
4th Instruction Fetch

T T2 T3 T4
1 1 1 1
1 1 1 1
1 1 1 1
clk . | — N \ / \ / \
CPU H \ ) |
1st Instruction Fetch : : 0
1st Instruction Execute | /—;-\ |
2nd Instruction Fetch | L }
2nd Instruction Execute | !
3rd Instruction Fetch T ! -
1 1
1 1
1 1

Il

Figure 7 shows the internal timing concept for the Register file. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 7. Single Cycle ALU Operation

T T2 T3 T4
1 1
1 1
1 1

clk ., — W \ 1 \ 1 \

1
Total Execution Time —— >

Register Operands Fetch —<___>

v

ALU Operation Execute

N—/

—
I

1
1
1
Result Write Back \ < )
1
1

Reset and The AVR provides several different interrupt sources. These interrupts and the separate reset

Interrupt Handling vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 286 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt vectors. The complete list of vectors is shown in “Interrupts” on page 59. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INTO — the External Interrupt Request
0. The interrupt vectors can be moved to the start of the boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 59 for more information.
The Reset vector can also be moved to the start of the boot Flash section by programming the
BOOTRST fuse, see “Boot Loader Support — Read-While-Write Self-Programming” on page
273.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction — RETI — is executed.

AIMEL 14

2467X-AVR-06/11 —— ©




e A TMega128

2467X-AVR-06/11

There are basically two types of interrupts. The first type is triggered by an event that sets the
interrupt flag. For these interrupts, the Program Counter is vectored to the actual interrupt vector
in order to execute the interrupt handling routine, and hardware clears the corresponding inter-
rupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be
cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared,
the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared
by software. Similarly, if one or more interrupt conditions occur while the global interrupt enable
bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the global
interrupt enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have interrupt flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLlI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; Store SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ,; start EEPROM write

sbi EECR, EEWE

out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */
_ disable_interrupt();

EECR |= (1<<EEMWE); /* start EEPROM write */
EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

AIMEL 15

®



e A TMega128

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

Assembly Code Example

sei ,; set global interrupt enable
sleep,; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; ilnterrupt(s)

C Code Example

_ _enable_interrupt(); /* set global interrupt enable */

__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

Interrupt Response The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-

Time mum. After four clock cycles, the program vector address for the actual interrupt handling routine
is executed. During this 4-clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in Sleep mode, the inter-
rupt execution response time is increased by four clock cycles. This increase comes in addition
to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these 4-clock cycles,
the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is incre-
mented by two, and the I-bit in SREG is set.

AIMEL 16

2467X-AVR-06/11 —— ©



e A TMega128

AVR
ATmegai28
Memories

In-System
Reprogrammable
Flash Program
Memory

2467X-AVR-06/11

This section describes the different memories in the Atmel® AVR® ATmega128. The AVR archi-
tecture has two main memory spaces, the Data Memory and the Program Memory space. In
addition, the ATmega128 features an EEPROM Memory for data storage. All three memory
spaces are linear and regular.

The ATmega128 contains 128Kbytes On-chip In-System Reprogrammable Flash memory for
program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as
64K x 16. For software security, the Flash Program memory space is divided into two sections,
Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega128
Program Counter (PC) is 16 bits wide, thus addressing the 64K program memory locations. The
operation of Boot Program section and associated Boot Lock bits for software protection are
described in detail in “Boot Loader Support — Read-While-Write Self-Programming” on page
273. “Memory Programming” on page 286 contains a detailed description on Flash programming
in SPI, JTAG, or Parallel Programming mode.

Constant tables can be allocated within the entire program memory address space (see the LPM
— Load Program Memory and ELPM — Extended Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 13.

Figure 8. Program Memory Map

Program Memory

$0000
Application Flash Section
Boot Flash Section
$FFFF

AIMEL 17

®



e A TMega128

SRAM Data
Memory

2467X-AVR-06/11

The Atmel® AVR® ATmega128 supports two different configurations for the SRAM data memory
as listed in Table 1.

Table 1. Memory Configurations

Configuration Internal SRAM Data Memory | External SRAM Data Memory

Normal mode 4096 up to 64K

ATmega103 Compatibility

mode 4000 up to 64K

Figure 9 shows how the ATmega128 SRAM Memory is organized.

The ATmegai128 is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in the Opcode for the IN and OUT instructions. For the Extended
I/O space from $60 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be
used. The Extended I/O space does not exist when the ATmega128 is in the ATmega103 com-
patibility mode.

In normal mode, the first 4352 Data Memory locations address both the Register file, the 1/0
Memory, Extended I/O Memory, and the internal data SRAM. The first 32 locations address the
Register file, the next 64 location the standard I/0O memory, then 160 locations of Extended I/O
memory, and the next 4096 locations address the internal data SRAM.

In ATmega103 compatibility mode, the first 4096 Data Memory locations address both the Reg-
ister file, the /0O Memory and the internal data SRAM. The first 32 locations address the Register
file, the next 64 location the standard I/0O memory, and the next 4000 locations address the inter-
nal data SRAM.

An optional external data SRAM can be used with the ATmega128. This SRAM will occupy an
area in the remaining address locations in the 64K address space. This area starts at the
address following the internal SRAM. The Register file, /0, Extended 1/0O and Internal SRAM
occupies the lowest 4352bytes in normal mode, and the lowest 4096bytes in the ATmegai03
compatibility mode (Extended I/O not present), so when using 64Kbyte (65536 bytes) of Exter-
nal Memory, 61184bytes of External Memory are available in normal mode, and 61440 bytes in
ATmega103 compatibility mode. See “External Memory Interface” on page 25 for details on how
to take advantage of the external memory map.

When the addresses accessing the SRAM memory space exceeds the internal data memory
locations, the external data SRAM is accessed using the same instructions as for the internal
data memory access. When the internal data memories are accessed, the read and write strobe
pins (PGO and PG1) are inactive during the whole access cycle. External SRAM operation is
enabled by setting the SRE bit in the MCUCR Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access of the
internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD, PUSH, and POP
take one additional clock cycle. If the Stack is placed in external SRAM, interrupts, subroutine
calls and returns take three clock cycles extra because the two-byte program counter is pushed
and popped, and external memory access does not take advantage of the internal pipe-line
memory access. When external SRAM interface is used with wait-state, one-byte external
access takes two, three, or four additional clock cycles for one, two, and three wait-states
respectively. Interrupts, subroutine calls and returns will need five, seven, or nine clock cycles
more than specified in the instruction set manual for one, two, and three wait-states.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register file,
registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

AIMEL 18

®



e A TMega128

2467X-AVR-06/11

The Indirect with Displacement mode reaches 63 address locations from the base address given

by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O registers, and the 4096bytes of internal data
SRAM in the ATmega128 are all accessible through all these addressing modes. The Register
file is described in “General Purpose Register File” on page 11.

Figure 9. Data Memory Map

Memory Configuration A
Data Memory
32 Registers $0000 - $001F
64 1/0 Registers |} $0020 - $005F
160 Ext I/O Reg. | $0060 - $00FF
$0100
Internal SRAM
(4096 x 8)
$10FF
$1100
External SRAM
(0 - 64K x 8)
! I
| 1
! R
o= -7 -
- I
il :
1 1
1 1
1 1
P | $FFFF

Memory Configuration B

Data Memory

32 Registers

64 1/0 Registers

Internal SRAM
(4000 x 8)

External SRAM
(0 - 64K x 8)

_____________

[ A

$0000 - $001F
$0020 - $005F
$0060

$OFFF
$1000

$FFFF

ATMEL

®

19



e A TMega128

Data Memory Access
Times

EEPROM Data
Memory

EEPROM Read/Write
Access

EEPROM Address
Register — EEARH and
EEARL

2467X-AVR-06/11

This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clkgpy cycles as described in Figure 10.

Figure 10. On-chip Data SRAM Access Cycles

T T2 T3

clk J \ /:' \ / \

cPU ,

"X Address valid |
]

Deta —:—]

Address T Compute Address

Memory access instruction Next instruction

The Atmel® AVR®ATmega128 contains 4Kbytes of data EEPROM memory. It is organized as a
separate data space, in which single bytes can be read and written. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access between the EEPROM and the
CPU is described in the following, specifying the EEPROM Address Registers, the EEPROM
Data Register, and the EEPROM Control Register.

“Memory Programming” on page 286 contains a detailed description on EEPROM programming
in SPI, JTAG, or Parallel Programming mode

The EEPROM access registers are accessible in the I/0 space.

The write access time for the EEPROM is given in Table 2. A self-timing function, however, lets
the user software detect when the next byte can be written. If the user code contains instructions
that write the EEPROM, some precautions must be taken. In heavily filtered power supplies, V¢
is likely to rise or fall slowly on Power-up/down. This causes the device for some period of time
to run at a voltage lower than specified as minimum for the clock frequency used. See “Prevent-
ing EEPROM Corruption” on page 24. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

Bit 15 14 13 12 11 10 9 8
- - - - EEAR11 | EEAR10 | EEAR9 | EEARS8 EEARH
EEAR7 | EEAR6 | EEAR5 | EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 X X X X
X X X X X

¢ Bits 15..12 — Res: Reserved Bits

These are reserved bits and will always read as zero. When writing to this address location,
write these bits to zero for compatibility with future devices.

AIMEL 20

®



e A TMega128

* Bits 11..0 - EEAR11..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL — specify the EEPROM address in the 4
Kbytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 4096.
The initial value of EEAR is undefined. A proper value must be written before the EEPROM may
be accessed.

EEPROM Data

Register - EEDR Bit 7 6 5 4 3